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Abstract

In this work, we present AutoQML, a framework that seamlessly integrates Quantum
Machine Learning (QML) algorithms into Automated Machine Learning (AutoML).
Leveraging the advantages of the AutoML paradigm, the framework is intentionally
designed with a high level of abstraction, eliminating the need for users to possess ex-
tensive experience in both Machine Learning (ML) and Quantum Computing (QC). The
tool automates the entire process of constructing typical ML pipelines including data
cleaning and preprocessing as well as model selection, optimization, and evaluation.
Additionally, it automatizes QC-specific aspects as for example selection of qguantum
backends and execution management on real quantum hardware. AutoQML utilizes
Ray as its underlying AutoML optimization framework and employs the in-house de-
veloped QML library sQUIearn for providing QML algorithms. Both of these compon-
ents provide low-level functionality and can be used as standalone solutions. Finally,
we delve into the integration steps required to incorporate the framework into the
Quantum Computing-as-a-Service platform, PlankQK.
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1 Introduction & Motivation

In today’s quantum computing (QC), the advancement and assessment of quantum al-
gorithms demand a substantial understanding of both the specific application domain and
intricate quantum hardware configuration. The proper configuration of quantum hard-
ware is also delicate, given that the selection of the appropriate backend and algorithm
hinges on factors such as error rates, calibration, coupling maps, fidelity, and more. Sim-
ilar to traditional Machine Learning (ML), Quantum Machine Learning (QML) combines the
statistical learning techniques of ML with QC, transforming conventional algorithms into
innovative forms, such as quantum kernel methods [1] or quantum neural networks [2].
Despite the existence of open research questions, there is a large potential for enhancing
algorithmic performance [3]. In both traditional and quantum ML, the process of devel-
oping and implementing solutions typically follows an iterative approach, guided by trial
and error, given the absence of clearly defined rules for creating optimal pipelines. Experts
must manually handle tasks such as data cleaning, preprocessing, feature engineering,
model tuning, and evaluation, rendering the process slow and resource-intensive.

Automated Machine Learning (AutoML) holds promise in overcoming challenges associ-
ated with constructing ML applications [4, 5, 6, 7]. The research field is dedicated to
streamlining the development process and reducing the required level of expertise by auto-
mating the creation of ML pipelines. AutoML simplifies the training of ML models for
domain experts and enhances the efficiency of ML professionals by automating repetitive
tasks, such as hyperparameter optimization (HPO) or algorithm selection (AS) [8]. The fun-
damental concept of AutoML, which separates technical complexity from user experience
and facilitates quick prototyping, is an attractive proposition, particularly in the domain of
QML, for which a shortage of experts exists.

This study expands the AutoML paradigm into the quantum domain by integrating optim-
ization and integration routines specifically designed for QML algorithms with the auto-
mation capabilities of traditional AutoML frameworks. We outline the requirements and
architecture of a novel AutoQML framework, along with potential integration options into
the QC-as-a-Service platform provided by PlanQK.

The following document is structured as follows: In Chapter 2, we outline the requirements
and illustrate our rationale for selecting the traditional AutoML framework that serves as
the backbone of our library. Chapter 3 introduces the framework architecture and its cur-
rent implementation status, with a specific focus on two key aspects: the integration and
management of QML algorithms and their associated management layer (Sec.3.1), and
the design of the overall AutoQML framework architecture (Sec.3.2). Chapter 4 outlines
our initiatives to integrate the framework into the PlanQK platform, a quantum software
ecosystem, aiming to enhance accessibility for researchers and practitioners. In the final
Chapter 5, we provide an overview of the current state of the framework and offer insights
into its future outlook.



2 Framework Requirements

After systematically evaluating, selecting, and benchmarking traditional AutoML frame-
works for their extension to QML in our prior work [9], we have proceeded to imple-
ment the AutoQML framework. This software library augments a suitable existing AutoML
framework with functionalities designed to optimize and streamline the development of
QML algorithms. While the framework is still in active development, it already incorporates
the majority of functionalities related to both AutoML and QML algorithms. This chapter
outlines the functional and technical requirements for the chosen traditional AutoML frame-
work, which serves as the functional backend, along with the expected utility of the im-
plemented AutoQML framework, as described in Section 3.

2.1 AutoML Requirements

AutoML frameworks for traditional ML can be categorized into high and low abstraction
levels [9, Ch. 2]. Depending on their abstraction level, these tools encompass various
aspects of an ML development procedure and resulting pipeline, as illustrated in Figure 1.
Low-level frameworks often demand a high level of proficiency in data science, particularly
requiring familiarity with ML algorithms, as users must define and structure search spaces.
In contrast, high-level frameworks aim to address the overarching challenge of pipeline cre-
ation. These tools leverage the automation and optimization features of low-level frame-
works, expanding them with additional preprocessing, ensemble, and evaluation steps.
This enables high-level frameworks to automatically generate entire ML pipelines.

The AutoML optimizer for the AutoQML framework must fulfill the following requirements:

(1
(2
(3
(
(

Have a Python interface.
Be open-source.

)
)
) Be under active development.
4) Have an active community.

)

5) Support different common ML problems (classification, regression) and input data
types (e.g., tabular, image, time series).

(6) Have a permissive license.

These criteria are essential for the frameworks under consideration to be included in the
final selection. Additionally, we assess the framework based on the following aspects:

e Number and types of available ML backends.
e Size and structure of the provided search space.

e Supported optimizers/search algorithms (such as random search, Bayesian Optim-
ization, evolutionary approaches, etc.).
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Figure 1: lllustration of a typical ML development process. Different abstraction levels
of AutoML correspond to specific processing steps within a single pipeline. A low-level
AutoML framework typically automates the traditional training step by exploring various
combinations of algorithms and hyperparameters. In contrast, a high-level framework not
only automates the training step but also encompasses algorithm-dependent data prepro-
cessing and potentially includes segments of the data cleaning procedure. The figure is
obtained from [9, Fig. 3].

The detailed discussion of the selection process for the aforementioned requirements is
provided in our previous publication, referenced as Klau et al. [9, Ch. 4].

2.2 Quantum Machine Learning Requirements

Through interviews with QC developers and researchers affiliated with the Fraunhofer Insti-
tutes for “Manufacturing Engineering and Automation” (IPA) and “Industrial Engineering”
(IAO), three general integration benefits and synergies with AutoML were identified [9].
These have been incorporated as desired functionalities in the framework specification:

e Selection and configuration of QML algorithms with AutoML approaches: Utiliz-
ing established traditional ML and optimization methods, the framework aims to
identify the optimal QML algorithm and configure hyperparameters tailored to a
given task. This necessitates the framework’s ability to handle datasets with diverse
or multimodal input data, execute preprocessing steps such as data analysis and
feature engineering, choose and optimize the most suitable QML algorithms, and
ultimately generate an end-to-end QML pipeline.

e Quantum-enhanced AutoML optimization: The framework should offer the flexib-
ility to implement custom HPO approach. QC can also enhance optimization effi-
ciency during the hyperparameter search for traditional ML algorithms. Given that
AutoML frameworks often navigate high-dimensional parameter spaces, quantum
optimization and search algorithms, such as quantum Bayesian optimization [10],
hold the potential to improve this process.

e Incorporating decision characteristics and meta-learning for QML pipelines: Ana-
logous to their traditional counterparts, different QML models exhibit advantage-
ous settings or failure modes contingent on the specific task. This knowledge
gained through the empirical application of these algorithms can be integrated into
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Figure 2: Visualization depicting the stages in the QML development process addressed
by the AutoQML framework. The framework streamlines algorithm and hardware op-
timization tasks throughout the QML pipeline, covering specialized data preprocessing,
evaluation of quantum hardware constraints, and automatic model training and assess-
ment.

the decision criteria to help developers in an a priori selection of well-performing
algorithms and QC backends for their data and use case. A prerequisite for the
AutoQML framework is the incorporation of these rules and meta-learning ap-
proaches into the pipeline creation process.

On the software development front, the integration of QML algorithms into the AutoQML
framework should be facilitated through wrapper functions that support hyperparameter
configuration, enhancing compatibility with existing implementations. The framework
also should support both simulators and real QC hardware backends. Furthermore, it is
crucial to provide utility methods for the automatic management of lengthy queues and
job submissions, tailored to the specific requirements of different quantum computers.
Additional tools may be deemed necessary to evaluate the economic, operational, and
hardware constraints of the written code. The supported QC libraries should encompass
the two primary frameworks widely used in QML: IBM Qiskit [11] and Xanadu's PennyLane
[12]. Additionally, the framework should exhibit compatibility with popular Python-based
data science and Al tools.

2.3 Decision Criteria & Framework Selection

In our approach, we opt for a low-level framework and develop a customized high-level
automation utility around it. This strategy guarantees increased flexibility in handling both
traditional and QML algorithms, while also minimizing overhead in the implementation
and management of separately maintained frameworks.

Building upon the insights from [9], the traditional framework chosen for extension and
integration with both traditional and QC-specific automation procedures is Ray [13]. The
decision is grounded on the following considerations:

e Ray, classified as a low-level framework, possesses distinct attributes:

- Itis more straightforward to programmatically expand or encapsulate than
its higher-level counterparts. This simplifies the definition of QC-specific
processing steps and pipeline components.



- Ray exclusively addresses the CASH problem (combined algorithm selection
and hyperparameter optimization) by defining (structured) search spaces.
This feature facilitates the seamless incorporation of novel algorithm classes
and different frameworks.

- Pipeline stages specific to QC, not typically considered in traditional AutoML
frameworks (such as backend analysis and selection), can be directly imple-
mented. This is possible because Ray does not rely on predefined prepro-
cessing stages.

* In a comprehensive real-world evaluation across the four distinct use cases and
QC problem types [9, Ch. 5.2] investigated in the project, Ray achieved the best
results. It either matched or surpassed frameworks within the same category in
terms of final model prediction quality, training and inference efficiency, utilization
of computing resources, and configurability of framework behavior.

e Ray supports a variety of traditional libraries for implementing ML models, making
it a flexible tool to train and compare traditional ML algorithms with their quantum
counterparts.

e Ray also receives high ratings for future security and quality of life aspects. The
framework’s emphasis on parallelism and efficient computing renders it widely ap-
plicable across various software development use cases. With a substantial com-
munity of around 900 contributors and an extensive user base (28.5k GitHub
Stars), along with nearly 6000 individual documentation URLs, Ray remains un-
der active development and improvement. This makes it a fitting option for a
high-performance backend'.

'The numbers are sourced from the project’s GitHub page https:/github.com/ray-project/ray.
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3 AutoQML Framework
Specifications

Building upon the framework requirements identified in the previous chapter, we present
an overview of the actual implementation of the framework that integrates QML into
AutoML. Initially, we introduce a library designed to standardize QML algorithms within
a scikit-learn-like interface, referred to as sQUlearn [14]. Subsequently, we introduce
AutoQML to enhance sQUlearn with AutoML capabilities.

3.1 QML Integration

We have developed sQUlearn [14], a standalone Python library ready for QML on Noisy
Intermediate-Scale Quantum (NISQ) computers. This library features a scikit-learn inter-
face [15] to seamlessly integrate QML algorithms into an AutoML framework. The design
ensures compatibility with many traditional ML tools in general. The library adopts a dual-
layer approach, offering high-level implementations of QML methods. Additionally, it
provides low-level implementations for advanced users interested in developing and re-
searching new QML methods. The high-level implementations cover quantum neural net-
works (QNN)[16] and quantum kernel methods[17] in various forms, such as quantum
support vector machines (QSVM)[18] and quantum Gaussian processes[19]. All these tools
can be utilized for both classification and regression tasks. Figure 3 illustrates the high-
and low-level modules of the sQUlearn library. The high-level methods at the top of the
figure are seamlessly integrated into the AutoQML framework.

QNNs employ parameterized quantum circuits with data-dependent inputs and generate
outputs by evaluating the expectation values of observables. The circuit parameters and
observables are adjusted through gradient-based optimization to minimize a loss function,
similar to the training process of traditional artificial neural networks. The QNN engine
in sQUlearn incorporates arbitrary differentiation concerning parameters or data inputs,
achieved through the successive application of the parameter shift rule [20]. Data struc-
tures facilitating the computation of necessary arithmetic for expectation values are also
implemented. In contrast to other QML libraries like Qiskit, sQUlearn allows parameter-
ization and training of the observables defining the QNN output, enabling more versatile
models. Additionally, it supports caching of both derivative circuits and obtained results.
Furthermore, sQUlearn offers an efficient execution that minimizes the number of circuit
evaluations on the quantum computer. Our developed variance regularization, aimed at
reducing shot noise, and an adaptive shot control are available in the high-level QNN pro-
grams [21]. These features can also be controlled through hyperparameters.

Quantum kernel methods leverage the exponentially large Hilbert space accessible by a
quantum computer to embed input data into a high-dimensional representation. In this
expansive space, a machine learning model can be constructed using linear regression
or classification through conventional kernel methods. These methods utilize the fidelity
between quantum states as the kernel matrix. However, the use of fidelity-type quantum
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Figure 3: Schematic overview of sQUlearn: The top level displays the diverse high-level
implementations available in sQUlearn that can directly be integrated into the AutoQML
framework. These implementations build upon the low-level modules of the quantum
kernel and QNN engine. The executor is employed to conduct experiments on simulated
and real backends, utilizing the Qiskit environment.

kernels in such extremely large spaces may result in exponentially vanishing fidelity [22]. To
circumvent this curse of dimensionality, projected kernels have been developed [23]. These
kernels first project the embedded states back into a lower-dimensional traditional rep-
resentation before performing the kernel evaluation. In sQUlearn, both fidelity-type and
projected quantum kernels are supported. The implementation of the projected quantum
kernel utilizes the QNN implementation to compute the projection back to the real space.
The outcome is then incorporated into an outer kernel, offering various options such as
the Radial Basis Function (RBF) Kernel or the Matern kernel. The options for constructing
the projected kernel can be set as hyperparameters, which allows tuning by the AutoQML
framework. Additionally, specialized regularization and mitigation techniques, adjustable
through hyperparameters, are available in the high-level implementations.

Moreover, sQUlearn places a significant emphasis on NISQ-compatibility and end-to-end
automation, featuring black-box implementations of QML algorithms capable of running
on currently available quantum hardware. This is achieved by centralizing the execution
of all quantum jobs. The execution engine is responsible for automatically selecting the
suitable backend, submitting and restarting failed jobs, as well as renewing sessions of the
quantum provider. Presently, the execution and circuit management rely on Qiskit [24].
Consequently, all algorithms can be easily executed on IBM hardware and Qiskit-based
simulators. However, an extension to other hardware providers is planned.

3.2 Framework Design

In the following section, we elaborate on the AutoQML framework, which enhances QML
algorithms with AutoML capabilities. Our goal is to achieve end-to-end automation for
QML. Consequently, AutoQML not only selects a fine-tuned QML algorithm but also con-
structs a complete QML pipeline with appropriate preprocessing to ensure high-quality
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Figure 4: Architecture overview of the AutoQML framework.

predictions. Figure 4 provides a high-level overview of the AutoQML architecture. As of
the time of writing, the framework is still under development. While core modules such as
Search Space Selection, AutoML Optimizer, and Evaluation are already functional, other
modules like Meta Learning and Persistence are still currently developed. The fully func-
tional framework will be available by the end of the project. In the remainder of this
section, we will provide a more detailed explanation of the architecture.

In general, the AutoQML architecture is primarily inspired by state-of-the-art AutoML, such
as [25]. The user is required to provide an input dataset with a task description, more
specifically classification or regression.? Similar to AutoML for traditional machine learning,
we generate a search space for automated optimization. This search space encompasses
the necessary steps to create an end-to-end pipeline for QML predictions, which can be
divided into three phases:

Data Cleaning This phase is responsible for eliminating potential defects from the input
data. It includes imputation of missing values, outlier removal, and encoding of
categorical features.

Preprocessing The preprocessing phase transforms the data into a format suitable for
guantum computing. It involves dimensionality reduction, down-sampling, and res-
caling. An extension with basic feature engineering is planned for future work.

Prediction The prediction phase employs classification or regression algorithms to gen-
erate the actual predictions. The available QML algorithms are implemented via
sQUlearn.

Most steps in the search space can be freely combined or skipped to create a diverse set
of pipelines.

2While an extension to other learning tasks like unsupervised learning is possible, the focus of this work is
on supervised learning.



The actual AutoML optimization is conducted using Ray Tune [26] in conjunction with
Optuna [27]. With the complete search space description, Ray Tune iteratively draws new
test configurations, denoted as X;. A configuration represents an abstract specification of
a particular QML pipeline. The configuration J; is then passed to the evaluation function,
which returns a score I; € [0,1]. Based on the (X;,1;) tuple, a probabilistic model of the
loss function is generated to create the next test candidate X;.;. This process is repeated
until a user-provided budget, such as a time limit, is exhausted. Ray Tune is employed to
learn the relation between X; and I;, guiding the optimization toward a well-performing
region in the search space.

The evaluation function transforms the abstract configuration into an actual QML pipeline.
Subsequently, the determination of the quantum computer on which the pipeline will be
executed becomes crucial. Therefore, an algorithm for automatic QC backend selection
is integrated into the framework. This algorithm, given the required qubits of the QML
circuits, searches for a backend with sufficient qubits and low expected error rates. Once
the backend is fixed, the pipeline is scheduled for execution. The selected preprocessing
steps are computed on traditional hardware, and the intermediate dataset is passed to
the chosen QML implementation to calculate the performance I; of the configuration. All
evaluated pipelines are persisted with meta-information. When the optimization budget
is exhausted, the best-performing configuration X* and the corresponding fitted pipeline
are returned to the user.

Note that, prior to search space generation, the concept for the final framework incorpor-
ates also a meta-learning module. Here, the input data is analyzed to capture its general
characteristics in various meta-features. These meta-features contain simple yet crucial
information about the dataset, such as the number of features, number of samples, or
presence of missing values. These features can then be used to warm-start the optim-
ization process. The fundamental idea is that meta-learning can be employed to directly
propose a set of QML pipelines that are well-suited for the provided input data. In the con-
text of QC, well-suited pipelines should include necessary preprocessing steps to enable
execution on quantum hardware. In the NISQ era of QC, these steps include appropriate
downsampling and feature reduction to account for the limited number of qubits. For
traditional computing, meta-learning is typically performed by evaluating a large set of
pipelines on various datasets to learn a mapping [28]. In the context of QC, the details
of such a mapping are an ongoing research question within the project. Given that calls
to actual QC hardware are expensive in many aspects, the inclusion of a meta-learning
module is expected to significantly reduce the overall optimization cost.
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To fully leverage the potential of Quantum Computing (QC) in the near-term future, the
integration of the AutoQML framework into everyday processes, both technically and eco-
nomically, is essential. This integration will be facilitated through PlanQK (Plattform und
Okosystem fur Quantenapplikationen), a German initiative designed to offer a platform
for researchers and industry to exchange and provide quantum software solutions in an
app-store-like manner.?. PlanQK serves a dual purpose: providing developers, scientists,
and businesses with a platform for collaboration, and functioning as a provider for QC as
a service.

To integrate tools into the PlanQK platform, users submit their software solution in form
of a docker container as a service that becomes available on the platform. Customers
can then access the service through an app that manages billing and documentation of
the provided functionality. Input and output data are stored in data pools on the plat-
form, available for use by the services, while the scheduling and queuing of the quantum

/ \ 4 Developer/Provider
Quantum Ressources PIanQK (g} ©m—
e
Service / n -
AutoQML
T N ( Consumer/Customer

il

Figure 6: Architecture example for automated QML as service

3For more details, see https:/plangk.de
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workload to the quantum hardware are handled by the PlanQK platform.

By the end of the project, the AutoQML framework will be added as a container template to
PlanQK, enabling the platform to offer the high-level features of the AutoQML framework
as a service. Figure 6 shows how a service is integrated into a production environment and
communicates with stakeholders.

To enhance the interaction with the PlanQK platform, the Python library pyplangk has been
developed as a project helper to abstract and wrap the PlanQK REST API. This simplifies
and makes the interaction with PlanQK more developer-friendly. pyplangk will be open
source and published as a community-maintained project.

1N



5 Summary and Outlook

In this work, we introduced AutoQML — a Python framework that extends AutoML to

guantum-based machine learning algorithms. The library is built upon the low-level AutoML
library Ray. The QML implementation is achieved through sQUlearn, an in-house-developed
QML library offering various NISQ friendly QML algorithms. The interface between Ray and

sQUlearn is based on scikit-learn. AutoQML provides an end-to-end solution, enabling the

automatic creation of the entire pipeline — from preprocessing and algorithm selection to

hyperparameter optimization of the QML methods. Furthermore, the hardware selection

of supported quantum computers and execution management are also automatized when

real quantum computers are employed.

AutoQML aims to bridge the gap between QML research and industrial application by
automating the use of cutting-edge QML methods. Leveraging the foundation of a con-
ventional AutoML library, AutoQML seamlessly accommodates both QML and traditional
ML. This flexibility enables the selection of the overall best-performing algorithm for a
given task, irrespective of its nature — be it traditional or quantum. The library is intended
to co-develop with the technological advances in the field of QC, adapting to the state
of the underlying hardware. Consequently, we anticipate that QML will emerge as the
preferred choice for specific use cases as technology matures. This holds true even though
traditional ML outperforms most of the existing QML alternatives today.
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